Monads Defined by Involution-Preserving Adjunctions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monads Defined by Involution - Preserving Adjunctions

Consider categories with involutions which fix objects, functors which preserve involution, and natural transformations. In this setting certain natural adjunctions become universal and, thereby, become constructible from abstract data. Although the formal theory of monads fails to apply and the Eilenberg-Moore category fails to fit, both are successfully adapted to this setting, which is a 2-c...

متن کامل

Monads and Adjunctions for Global Exceptions

In this paper, we look at two categorical accounts of computational effects (strong monad as a model of the monadic metalanguage, adjunction as a model of call-bypush-value with stacks), and we adapt them to incorporate global exceptions. In each case, we extend the calculus with a construct, due to Benton and Kennedy, that fuses exception handling with sequencing. This immediately gives us an ...

متن کامل

Homotopy Coherent Adjunctions and the Formal Theory of Monads

In this paper, we introduce a cofibrant simplicial category that we call the free homotopy coherent adjunction and characterise its n-arrows using a graphical calculus that we develop here. The hom-spaces are appropriately fibrant, indeed are nerves of categories, which indicates that all of the expected coherence equations in each dimension are present. To justify our terminology, we prove tha...

متن کامل

Algebras defined by homomorphisms

Let $mathcal{R}$ be a  commutative ring with identity, let $A$ and $B$ be two $mathcal{R}$-algebras and $varphi:Blongrightarrow A$ be an $mathcal{R}$-additive algebra homomorphism. We introduce a new algebra $Atimes_varphi B$, and give some basic properties of this algebra. Generalized $2$-cocycle derivations on $Atimes_varphi B$ are studied. Accordingly, $Atimes_varphi B$ is considered from th...

متن کامل

Categories Enriched over a Quantaloid: Isbell Adjunctions and Kan Adjunctions

Each distributor between categories enriched over a small quantaloid Q gives rise to two adjunctions between the categories of contravariant and covariant presheaves, and hence to two monads. These two adjunctions are respectively generalizations of Isbell adjunctions and Kan extensions in category theory. It is proved that these two processes are functorial with infomorphisms playing as morphi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1975

ISSN: 0002-9947

DOI: 10.2307/1998036